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Convergence of a cylindrical liquid shell and the
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This paper presents the results of experimental studies of a collapsing cylindrical
cavity (the convergence of a liquid shell) in a rotating fluid as well as the formation
and propagation of a jump (bore) at the interface. The basic parameters of the liquid
shell dynamics for a pulsed one-dimensional load are estimated using the equation
of cylindrical cavity pulsation in an unbounded fluid. The theoretical model of a
rotationally symmetric hydraulic jump moving along the free surface of a hollow
vortex is constructed. The jump is simulated by a discontinuous solution of the
equations in the long-wave approximation for tornado-like and hollow vortices. For
comparison with the experimental data, basic theoretical results are obtained for
flows in a hollow vortex with constant circulation and axial velocity varying along
the radius of the rotating liquid shell.

1. Introduction
A number of problems of wave focusing and flow convergence are at present

conveniently considered in the one-dimensional cylindrical formulation, which allows
a relatively simple experimental realization for study of the flow pattern features
and the stability of interfaces. A similar approach is also sometimes used to solve
axisymmetric problems, when the method of independent sections permits one to
reconstruct a reasonably accurate picture of the process from ‘one-dimensional’ results.
Two characteristic examples can be cited: the collapse of a conical liquid shell
under loading by a detonation wave travelling along the cone surface (classical
cumulation), and the generation of a conical shock wave in a fluid as a result of
a cord (linear) charge explosion with a finite detonation rate. Consideration of the
delay in the detonation propagation time and, correspondingly, the start of the process
development in each section, allows quite a good estimation of basic features of the
axisymmetric flow.

The problems of cumulation have been examined within the framework of
thermonuclear fusion programmes as well (Vakhrameev 1995; Zababakhin 1970;
Tarzhanov 1995) and very intensively in the studies of destruction mechanisms in
lithotripsy systems (Gronig 1989; Sturtevant 1989; Book & Lohner 1989; Takayama
1989; Fujiwara et al. 1993; Demmig et al. 1993; Hiroe et al. 1993; Kuwahara et al.
1991; Isuzukawa & Horiuchi 1991), where the case in point is the focusing in liquid
media of short shock waves with an intense and relatively prolonged rarefaction
phase following a front, and also the formation and collapse of bubble clusters on
solid targets.

Recently interest in the problem of shock wave focusing in the gas phase in
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spherical bubbles has been rekindled in connection with the modelling of the sono-
luminescence mechanism (Gaitan & Crum 1990; Atchley 1993; Crum 1994) – the effect
of an ultrashort light-flash generation during the collapse of cavitation bubbles. It is
evident that here the shock waves are excited during the cavity-convergence process,
whose liquid walls act as a spherical piston. From these standpoints investigations
of various approaches to the formation of convergent fluid flows have a principal
role.

In the context of the analysis of one of the possible approaches to the modelling
of the processes related to thermonuclear fusion, a rather simple technique to create
a liquid cylindrical piston (shell) has been proposed and studied experimentally by
Kedrinskii & Pigolkin (1964). The basic idea was that a transparent vertical water-
filled cylinder closed at the bottom and with a movable cover at the top, was spun
around its axis so that an inner cylindrical cavity formed, which was bounded by a
rotating liquid shell. Thereafter the cavity was filled with an explosive gas mixture.
In studies of the stability and dynamics of the interface of such a rotating shell, the
possibility was analysed of cylindrical gas-cavity compression to the temperature of
detonation initiation in the gas mixture filling it (as a result of adiabatic compression).
The experiments were carried out for two types of pulse loading: along the axis of
the rotating cavity and a cylindrically symmetric variant.

In the first case a new unexpected effect was discovered: at the surface of the cavity
a stable jump (bore) was formed which propagated with a velocity exceeding that
of the piston generating it. In the second case one-dimensional cylindrical flow was
achieved and the nature of the cavity convergence as a function of the initial pressure
in it could be investigated.

Regarding the bore effect, one may recall hydraulic jumps in open channels which
have been considered in a large body of works. At first, the theoretical description
of this phenomenon was restricted to the study of potential flows of an ideal fluid
in the shallow water approximation, as, for instance, in Whitham (1974). In recent
years a model of the jump has appeared which accounts for the vortex character of
the motion (Teshukov 1995). The theory of the vortex jump or vortex breakdown
for swirling flows in a tube was originally suggested by Benjamin (1962), where the
possibility was considered of a finite transition between two conjugate states of a
stationary rotationally symmetric flow in a circular tube. It was assumed that in the
transition from one state to another, the total head and circulation are conserved
on streamlines. It turned out that the integral of axial momentum flux plus pressure
force (‘flow force’) over a section of the tube increased on transition downstream from
one state to another. The approach developed by Benjamin (1962), was applied to
flow in tubes with the possibility, after the transition, of cavitation zone formation
in the central part of the flow (Keller, Egli & Exley 1985). As the cavitation zone
formed, it turned out to be possible to satisfy conditions of constancy of both the
total head on the streamlines and ‘flow force’ after the transition from one state to
another.

In this paper, the results of experimental studies of a collapsing cylindrical cavity
in a rotating fluid are presented, estimations of basic parameters are suggested, based
on the notion of the cavity behaviour in an unbounded fluid, and a theoretical
model of a rotationally symmetric hydraulic jump moving along the free surface of
a hollow vortex is constructed. The jump is modelled by a discontinuous solution of
the equations in the long-wave approximation for tornado-like and hollow vortices
obtained by Nikulin (1992a). The theoretical model of the process can be developed
for the vortex flow wherein only the azimuthal vorticity component is non-zero. For
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Figure 1. Apparatus for investigation of the dynamics of a cylindrical gas cavity in
a rotating fluid.

comparison with the experimental data the main theoretical results were obtained for
flows in a hollow vortex with constant circulation and at an axial velocity varying
along the radius of the rotating liquid shell.

2. One-dimensional flow
2.1. Cylindrical convergence, experiment

The layout of the experiment on one-dimensional convergence is presented in figure 1.
In a transparent cylindrical tank (1) (its diameter is equal to 100 mm), mounted on
the shaft of a motor whose rotation speed could be varied over a sufficiently wide
range of values, a cup (2) was inserted, firmly attached to the tank by a special cover
with holes. The space between them, bounded from above by an annular piston (3),
was filled with a liquid. The shaft had a hole for feeding a reactive gas mixture which
could be shut when necessary.

Note that the real shape of the cup 2 is somewhat different from its schematic
representation in figure 1. The cup had a gentle expansion in the vicinity of its bottom
and its lower edge was smoothly rounded, which prevented flow detachment around
it.

Water was used as the working liquid, and the rotational speed of the transparent
cylindrical tank in experiments was set to about 30 rev s−1. The distance between the
bottom of the cup and the tank bottom measured 25 mm.

The whole system was placed into a chamber (4) with optical windows for obser-
vations, which was filled with water. In doing so, not only were conditions for optical
recording of the process improved, but together with special collars (5), the rotation
of the working cylinder was stabilized as well. The upper part of the chamber was a
high-pressure section (6), which was filled with an explosive gas mixture, for example
a 50% mixture of acetylene with oxygen, through the hole (7). Note that holes in the
inner cup cover ensured that the mixture filled the entire space of section 6 from its
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upper face into which a high-voltage spark gap (8) was built, to the annular piston
(3). The latter actually became the movable bottom of the high-pressure section.

When the cylinder (1) is rotated, a cylindrical cavity (9) is formed between its bottom
and the cup (2) bottom. The size of the cavity is varied by feeding gas through the
shaft, by the rotation speed and by the initial pressure of the explosive gas mixture
in section 6, which could be set depending on requirements, from units of kPa to
100 kPa. The pistons described (figures 1, 3) were mobile and could be easily displaced
by a rotating liquid shell. The two experimental set-ups had a device initiating the
detonation of the gas mixture in section 6 in the form of a discharge circuit with a
capacitor bank C2 and high-voltage spark gaps. The synchronization system of the
external illumination switches on the Rogowskii belt (u, inductance transducer) and
the pulse transformer PT amplifying the signal from the inductance transducer and
triggering the flash-lamp LF, on the leads of which the high-voltage capacitor bank
C1 is closed. The high-voltage power supply kV is designed to charge both these
capacitor banks. The high-speed camera HS-cam is used for optical recording of the
gas-cavity dynamics.

When the gas mixture in section 6 is exploded, the pressure in a shock wave and
in detonation products is transferred through the piston 3 to the liquid shell whose
rotational speed is kept constant. A typical oscillogram of the pressure in the fluid is
presented in figure 2(b). In this case the duration of the pulse loading is approximately
2.5 ms and the pressure increases up to 600 kPa in about 1.5 ms. The pressure trace
is the same for all cases presented by figure 2(a). Notice that initial pressures of gas
mixtures in sections 6 and 9, as a rule, are different and the pressure of detonation
products in 6 may be controlled by the original composition and quality of the
mixture.

The dynamics of the cylindrical cavity in the form of a continuous display of its
diameter at the loading mentioned for four different values of the initial pressure p0

of the gas mixture inside the cavity is shown in figure 2. Scanning is done through a
horizontal slit 1 mm wide centrally located in cavity 9 (the other sides of the cavity
are closed). The rotating mirror of the camera HS-cam turns the flow pattern in the
direction perpendicular to the slit and records on a film the dynamics of the cavity
diameter.

It is readily seen that at p0 = 60 kPa (figure 2a i) the cavity with the initial radius of
R0 ≈ 3 cm is compressed approximately six times and the rotation of the compressing
liquid shell slightly disturbs the cavity shape. For p0 = 20 kPa (figure 2a ii) and the
same value of R0, in the vicinity of the minimum (dmin ≈ 5 mm, the compression ratio
is about 12) instability development is observed in the cavity shape as a breaking of
flow symmetry which is enhanced by rotating the shell. One can see that the scan
is slightly curled. At this instant the external pressure roughly corresponds to the
minimum: the cavity is overcompressed to high pressure because of inertial properties
of the fluid, which is supported by its subsequent expansion.

At p0 = 10 kPa and R0 ≈ 3 cm (figure 2a iii), the minimum diameter of the cavity
is dmin ≈ 3 mm and the compression ratio is close to 20. In the vicinity of the
minimum an evident instability of the cavity shape is observed, manifesting itself in
the form of a ‘drill coil’. At p0 = 6 kPa and R0 ≈ 2 cm (figure 2a iv), the compression
ratio clearly exceeds its previous value; however it is impossible to find it with a
reasonable accuracy: the instability in the vicinity of the minimum radius increases.
The minimum occurs at an instant when the external loading has not yet reached
its minimum, which explains the large number of small pulsations, constituting the
scan structure for t > 2.75 ms: the cavity oscillates close to the minimum equilibrium
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Figure 2. (a) One-dimensional collapse of a cylindrical cavity at the initial gas pressure of p0 = 60
(i), 20 (ii), 10 (iii) and 6 (iv) kPa (in cavity 9). (b) Oscillogram of the pressure.

diameter whose scan takes the form of twisted cord. In conclusion it may be noted
that when the compression ratio R/R0 > 10, the interface instability begins to develop,
caused by an imperfection in the cylindrical surface, by the Rayleigh–Taylor instability
and by the liquid-shell rotation. This process manifests itself basically in the vicinity
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of the minimum cavity diameter. However we can consider that the flow as a whole
remains cylindrically symmetric.

2.2. Theoretical estimations

The process of cylindrically symmetric convergence of a liquid cavity is modelled
within the framework of the problem of cylindrical cavity collapse in an unbounded
fluid. Note that when this problem is formulated, difficulties arise even in the simplest
case of cylindrical cavity pulsation in an unbounded incompressible fluid. The point
is that this problem cannot be precisely formulated as an analogy to the equation
of Besant (1859) or Rayleigh (1917): in the cylindrically symmetric case the kinetic
energy of the incompressible fluid Tk per unit length has a logarithmic singularity at
infinity (at r →∞ Tk →∞) :

Tk = πρR2Ṙ2 ln
r

R
.

A problem with the law of energy conservation arises.
The way round this problem has been found in solving the problem of a lin-

ear (or cord) charge explosion in a compressible fluid, based on the invariance of
some function G = rn/2Ω (n = 0, 1, 2, where n = 1 fits cylindrical symmetry) on the
corresponding characteristic curves (Kedrinskii 1971, bib25)

∂G

∂t
+ c0

∂G

∂r
= 0, (2.1)

where Ω = ω + v2/2 is the kinetic enthalpy, ω is the enthalpy, v is the mass velocity,
and c0 is the sound velocity.

Result (2.1) is obtained as a generalization of the well-known Kirkwood–Bethe
approximation, proposed to solve the problem of underwater explosion of spherical
charges (Cole 1948). For a potential liquid flow in the acoustic approximation the
continuity equation in the one-dimensional case of flat, cylindrical and spherical
symmetry (n = 0, 1, 2) takes the form

∂2ϕ

∂r2
− c−2

0

∂2ϕ

∂t2
+
n

r

∂ϕ

∂r
= 0,

where ϕ is the velocity potential. If the function Φ = rn/2ϕ is substituted, this equation
can be reduced to the form

∂2Φ

∂r2
− c−2

0

∂2Φ

∂t2
+ n(2− n) Φ

4r2
= 0.

Hence it follows, that for n = 0, 2 exactly and for n = 1 in the asymptotic approxi-
mation (the last term is neglected) we obtain the wave equation

∂2Φ

∂t2
− c2

0

∂2Φ

∂r2
= 0.

Considering that in the above functions the pulse conservation equation is written as

∂Φ

∂t
= G,

it is easy to reduce the wave equation to (2.1): let us substitute ξ = t − r/c0, then
Φ = Φ(ξ), Φt = G, Φtt = Gt, Φr = −c−1

0 Φξ = −G/c0, Φrr = −Gr/c0.
Substitution of the function G into equation (2.1) corresponding to the replacement
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of partial derivatives for the total ones based on the conservation laws

dv

dt
= −∂ω

∂r
, c−2

0

dω

dt
= −∂v

∂r
− nv

r
,

and the transition to the wall of the cavity (r = R, v|r=R = dR/dt) allow the derivation
of a generalized equation describing the pulsation of a one-dimensional cavity (for
the plane n = 0, spherical symmetry n = 2, and, in the asymptotic approximation, for
cylindrical symmetries n = 1). It takes the form (Kedrinskii 1971, 25)(

1− 2Ṙ

c0

)
R

d2R

dt2
+

3

4
n

(
1− 4Ṙ

3c0

)(
dR

dt

)2

= n
ω

2
+

(
1− Ṙ

c0

+

(
Ṙ

c0

)2
)
R

c0

dω

dt
. (2.2)

Here ω is the enthalpy of the fluid at the wall of the cavity, Ṙ = dR/dt. Note
that (2.2) for n = 1 is approximate, but the approximation in the cylindrical variant
is utilized only in deriving the basic equation for the invariant G = rn/2Ω; under
other transformations only exact conservation laws are used. The answer to the
question of how well this approximation allows one to describe the real process of the
dynamics of the cylindrical cavity can be provided experimentally. A comparison of
the experimental data on the dynamics of the cavity in exploding linear charges and
the calculation results showed (Kedrinskii & Kuzavov 1977) that the basic parameters
of the process (the maximum radius of the explosive cavity and its pulsation period)
agree well with a good accuracy. In addition, from the analysis of the spherical cavity
dynamics, it is well known that the pulsation period T practically does not depend
on the compressibility of the fluid and on the gas content of the cavity (for a large
compression ratio).

Equation (2.2) has no special features and it is clear that none can arise in passing
to the incompressible limit. Let us use our knowledge of the cylindrical variant and
proceed to the limit of incompressible fluid in (2.2) (c0 →∞, ω → (pR−p∞)/ρ0). Then
for the cylindrical cavity (n = 1) and incompressible fluid we obtain the equation
(Kedrinskii 1971)

R
d2R

dt2
+

3

4

(
dR

dt

)2

=
pR − p∞

2ρ0

,

or in dimensionless form

yyττ + 3
4
y2
τ = 1

2
(p̄y−2γ − 1). (2.3)

Here the index τ denotes the corresponding derivative, y = R/R0, τ = t(p∞/ρ0)
(1/2)R−1

0 ,
p̄ = p0/p∞; the subscript ‘0’ is assigned to the initial values of the corresponding
parameters. It is suggested that the cavity pressure pR varies by the adiabatic law.

One can use what is known for a spherical cavity (Cole 1948) to find the pulsation
period Tcyl,∗ as twice the collapse time of a cylindrical cavity. Let us write (2.3) for
an empty cavity, multiply both sides by y1/2 and rearrange it in the form

d

dy
(y3/2y2

τ ) = −y1/2.

After a simple manipulation we obtain

τcyl,∗ = −
∫ 0

1

dy

( 2
3
(y−3/2 − 1))1/2

= 0.817F
(

1
2
, 7

6
, 13

6
, 1
) ≈ 1.49.
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Here F(α, β, γ, z) is the Gauss hypergeometric function. In dimensional form

tcyl,∗ ≈ 1.49Rmax

(
ρ0

p∞

)1/2

, Tcyl,∗ = 2tcyl,∗. (2.4)

Experimental verification of the formula obtained for the pulsation period of the
cylindrical cavity (the time interval between the shock-wave front and pressure peak
of the first pulsation) has been carried out on cord charges of explosives (Kedrinskii
1976). The comparison shows that the agreement of data is quite satisfactory.

By the way, one can set the problem of the dynamics of a cylindrical cavity
in the half-space of incompressible liquid and derive the corresponding equation
without the features mentioned above. This fits naturally with actual experimental
conditions. However, according to the resulting equation, the cavity dynamics proves
to be an essential function of the depth h as ln (h/R0), which is inconsistent with the
experimental data.

Note that the generation of cylindrical convergence using the explosion method
is particularly efficient when we are dealing with the necessity of investigating the
collapse of a liquid shell into vacuum. Such a system can be created by the explosion
of a cylindrical charge of a stoichiometric gas mixture of hydrogen with oxygen,
for instance, in the formulation with a rotating fluid. The steam produced from
the detonation of such a mixture will condense during the expansion stage and the
subsequent cavity-convergence process will not be limited by a ‘gas damper’.

Now we can try to use the expression (2.4), derived for an unbounded fluid, to
estimate the collapse time of a cylindrical shell in a rotating fluid. Experimental data
presented in figure 2 show that cavities with initial radii R0 ≈ 3 cm at p∞ ≈ 600 kPa
reach the minimum in tcyl,∗ ≈ 1.8 ms (for the first three sweeps) and for R0 ≈ 2 cm in
1.2 ms almost independently of the initial gas pressure in them. According to figure 2,
the estimations obtained are rather good ones. Some exceeding the experimental
data appears to be due to a portion of the energy of external explosive load being
consumed to supply rotational kinetic energy (per unit length) to the fluid filling the
cavity as it collapses.

Equation (2.3) can be integrated to obtain the expression for the radial velocity of
the cavity, which allows a simple estimation for the compression ratio to be deduced
assuming that R0/R � 1 (when Ṙ → 0):(

R0

Rmin

)2γ−3/2

≈ ( 4
3
γ − 1

)
p̄−1.

A calculation using this relation gives the following results for the compression
ratio: R0/Rmin ≈ 5.3, 12.2, 21 and 31 for p0 = 60, 20, 10 and 6 kPa, respectively. For
the first, second and third values the agreement with the experiment is satisfactory:
we have 6, 12 and 20, respectively. Estimating the experimental value of Rmin for the
fourth case (and comparing it with theoretical data) is found to be impossible because
of the complicated shape of the sweep in the vicinity of a minimum radius.

3. Axisymmetric collapse of a rotating shell (experiment)
The second schematic of the experiment is presented in figure (3a), which shows

the principal experimental block comprising the ‘transparent tank 1 and piston 2.
The high-voltage and recording part of this experimental set-up is the same as that
described in § 2.1. Unlike the first set-up (figure 1) wherein the main experimental
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Figure 3. (a) Device for the study of the cavity motion in a rotating fluid under pulse changes of
its height. (b) The bore at the surface of the cavity: u and w1 are velocities of the piston and the
bore, r10 and r20 are the cavity radii before and after the jump.
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Figure 4. Formation of a bore at the cavity surface; the frames (from left to right) correspond to
the instants of time of 0, 0.8, 1.2, 1.6, 2.0, 2.4 and 2.6 ms.

block is the transparent tank 1, inner cup 2 and annular piston 3, the inner cup is
absent and piston 2 occupies the whole cross-section of the transparent tank 1. A
high-speed camera HS-cam operates within the frame regime.

An explosion of the mixture in the high-pressure chamber 6 in this case considerably
changes the conditions of compression of the cylindrical cavity 9 formed between
the piston 2 and the bottom of the transparent tank 1. In fact, in this set-up, the
dynamics of the cavity under axial loading is studied, when the height of the rotating
cylindrical shell dynamically varies almost instantaneously over its entire section.

Characteristic frames from the high-speed photography of the flow-development
process are presented in figure 4, and a schematic showing the basic parameters of the
axisymmetric flow is given in figure 3(b) wherein the transparent tank 1 with piston
2 is scale-magnified. A dark line in the upper part of the frames in figure 4 denotes
the piston moving from the top down. It was found that in this set-up the cavity
collapses suddenly, if the fluid is assumed as practically incompressible, followed by
the formation of a jump (bore) (Kedrinskii & Pigolkin 1964).

The process of cavity collapse occurs solely near the piston (t = 0.8 ms), along its
surface, and continues up to some limit, first forming a characteristic ‘neck’ (t = 1.2 ms
in figure 4, of radius r20 see figure 3b) in the portion of the gas cavity adjacent to
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Figure 5. Dynamics of basic characteristics of bore formation: curves p and b are displacements
of the piston and bore, respectively.
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Figure 6. Dynamics of basic characteristics of bore formation: change in the cavity diameter near
the tank bottom c and average ‘neck’ diameter of the cavity after the jump e.

the piston. Note that this limit obviously cannot be determined by the gas-pressure
change inside the cavity, the bulk of which still retains practically its initial magnitude
and is connected with the ‘neck’. One can assume that upon forming the ‘neck’ in the
vicinity of the piston, the formation of the jump (bore) is practically accomplished
and the subsequent transformation of the cavity shape occurs essentially in the axial
direction as a result of this bore propagation.

As previously mentioned, the instantaneous flow pattern is represented schemat-
ically in figure 3(b), where u and w1 are velocities of the piston and bore, r10 and
r20 are the cavity radii before and after the jump, respectively, and r0 is the cylinder
radius.

The bore-forming process is conveniently followed from the dynamics of its separate
characteristics presented in figures 5 and 6. Displacement of the piston is shown as
curve p (figure 5) pointing to the tendency for an increase of its average velocity
whose magnitude in the time interval 1.2–2.4 ms can be estimated as ū ≈ 10 m s−1.
The modulation of the function p(t) by low-frequency oscillations is explained by
consecutive reflections of the detonation and thus shock waves from the walls and
piston in section 6 (figure 3a).

The curve e showing the formation of the ‘neck’ (figure 6), demonstrates that
the jump in the experiments discussed above is completely formed by the moment
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t ≈ 1.2–1.3 ms. From this time on, the average neck diameter is essentially unchanged
(the curve e becomes horizontal). Even at t ≈ 1 ms the bore has become stationary
(curve b in figure 5) and propagates with a near-constant velocity of w1 ≈ 32.6 m s−1.
Curve c (figure 6) shows the diameter dynamics of the rotating cylindrical cavity
(2r10, figure 3b, before a jump) near the tank bottom. It is easy to see that, beginning
at about t ≈ 1.6–1.7 ms, the flow becomes two-dimensional: the cavity collapses
intensively both along the radius and along the axis. Note that thereafter the intense
cavity collapse starting shortly (curve c in figure 6) before the jump does not affect
its velocity even though the cavity collapse becomes two-dimensional because the
change of the condition before the jump is added.

For comparison with the results of the theoretical analysis given below for the
bore shape, it is helpful to know the following two parameters: (a) the ratio δd of
the initial cavity diameter before the jump to its diameter after the jump (‘neck’
diameter, 2r20) and (b) the ratio of velocities in the ‘bore–piston’ system. For the
experimental conditions shown in figure 4 (the height of the cavity h ≈ 80 mm and
diameter 2r10 ≈ 40 mm) the ratio δd is approximately equal to 10. Note that despite
the decrease of the cavity diameter before the jump, according to the experimental
data the quantity δd remains practically constant at least until time 2.5 ms, close to
the complete collapse of the cavity. The ratio of the bore w1 and piston u velocities
is about 3.3.

Experiments with a relatively wide cavity (h/r10 ≈ 0.25) showed that the bore effect
holds. In this case δd ≈ 2.6 and the above ratio of velocities is about 1.8.

4. Theoretical model of a bore in a rotating fluid
In the construction of the theory we assume that an abrupt change in the cavity

radius is analogous in nature to a hydraulic jump or bore, travelling over the surface
of shallow water. We shall describe the jump motion within the ideal-fluid framework
in the long-wavelength (along the rotation axis) approximation. Theoretically, the bore
in this case is a place where the flow parameters change from their values before the
jump to new values after the jump. This is also true for the flow velocity, streamline
positions and the cavity radius. Thus the goal of the theory is to find conditions
linking the parameters of the flow before and after the jump and to determine the
velocity of the discontinuous motion.

First a general theory of the jump motion along the axis of a hollow vortex
is constructed. Rigorous results are obtained for the case when only one vorticity
component is non-zero – the azimuthal one. This implies, for instance, that velocity
circulation around the axis is constant throughout the flow. Further, the results of the
general theory are compared with the experiment. Although in the experiment the
velocity circulation around the axis is not constant, because the fluid is in solid-body
rotation, it is expected that the theory can predict the velocity of the bore motion
and cavity radius after the jump, given the piston velocity, initial cavity radius and
characteristic value of the velocity circulation around the axis.

4.1. Formulation of the problem; derivation of basic equations

Consider a rotationally symmetric flow of an ideal incompressible fluid in a circular
cylinder. The gravity force is neglected. Let us introduce a cylindrical coordinate
system (r̃, φ, z̃), where r̃ is the radius and the z̃-axis is directed along the axis of
symmetry. The fluid occupies the domain r1(z̃, t̃) 6 r̃ 6 r0, where r0 is the constant
radius of the cylinder and r1(z̃, t̃) is the radius of the free surface, t̃ is the time.
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Let (ur, uφ, uz) denote the velocity components corresponding to (r̃, φ, z̃); p̃, ρ̃ are
the pressure and density. Futher, Euler’s equation will be considered in the long-
wave approximation. The following boundary conditions are assumed: ur = 0 at the
cylinder boundary (r̃ = r0) and

p̃ = 0, ur =
∂r1

∂t̃
+ uz

∂r1

∂z̃

at the free surface (r̃ = r1(z̃, t̃)).
In order to proceed to the long-wave approximation, unit scales of length, velocity

and density are introduced: L is the characteristic scale of changes along the z̃-axis,
v0 is the characteristic value of the rotational velocity component at the boundary
of the cavity (for instance, at z̃ = 0, t̃ = 0, r̃ = r1) and ρ̃ is the density. Using these
scales, dimensionless values of η, z, t, q, A, w, p are introduced according to relations

r̃2 = ηδ2L2, z̃ = zL, t̃ = tL/v0, 2urr̃ = qδ2v0L, uφr̃ = Aδv0L,

uz = wv0, p̃ = pρ̃v2
0 , ρ = ρ̃/ρ̃ = 1.

Here δ = r0/L is the dimensionless value of r0. The value η = η1 corresponds to r̃ = r1
and η = 1 corresponds to r̃ = r0. Hereafter all quantities are taken in dimensionless
form, unless otherwise specified.

For dimensionless values, the equations of motion and continuity with regard to
rotational symmetry take the form

(δ2/2)(qt + qqη − q2/(2η) + wqz)− A2/η = −2ηpη,

At + qAη + wAz = 0,

wt + qwη + wwz = −pz, qη + wz = 0.

 (4.1)

Subscripts written in terms of independent variables denote corresponding partial
derivatives. The boundary conditions take the form

p = 0, q = η1t + wη1z, η = η1, (4.2)

q = 0, η = 1. (4.3)

It is assumed that δ � 1. Taking the long-wave-limit approximation the terms in
(4.1) proportional to δ2 are omitted. The system obtained is transformed by transition
to mixed Euler–Lagrange variables z′, t′, ν, ν ∈ [0, 1] (Teshukov 1991, 1995; Nikulin
1992a, Benney 1973), satisfying the relations

z′ = z, t′ = t, η = R(z′, t′, ν).

Here R satisfies the equation

Rt′ + wRz′ = q, (4.4)

and initial and boundary conditions

R(z′, 0, ν) = 1− ν(1− η1(z
′, 0)), R(z′, t′, 0) = 1, R(z′, t′, 1) = η1(z

′, t′);

η1(z
′, 0) is the given shape of the free surface at t′ = 0, and η1(z

′, t′) is the unknown
shape of the free surface at the moment t′.

It is easy to see that given this definition of R, the boundary conditions (4.2) (for q)
and (4.3) are satisfied automatically. In doing this the unknown boundary η = η1(z

′, t′)
is transformed into the known one ν = 1. The boundary η = 1 is transformed into
ν = 0.
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For differentiation operators one may write

∂R

∂ν

∂

∂z
=
∂R

∂ν

∂

∂z′
− ∂R

∂z′
∂

∂ν
,

∂R

∂ν

∂

∂η
=

∂

∂ν
,

∂R

∂ν

∂

∂t
=
∂R

∂ν

∂

∂t′
− ∂R

∂t′
∂

∂ν
.

Then in z′, t′, ν variables, after omitting the terms with δ2, the system (4.1) in view of
(4.4) takes the form (hereafter the primes on z′, t′ are omitted)

A2/(2R2)Rν = pν, (4.5a)

At + wAz = 0, (4.5b)

Rν(wt + wwz) = −Rνpz + Rzpν, (4.5c)

Rνt + (wRν)z = 0. (4.5d)

Next, conditions at the discontinuity are formulated and solvability of the equations
following from them is proved. For shallow water similar conditions were formulated
and analysed by Teshukov (1995).

4.2. Conditions at the discontinuity

It follows from the definition of ν and R that ν is the number of a liquid streamline
and R is the ratio of the square of the radial distance from the axis to the liquid
streamline with a given ν at fixed z and t, to the cylinder radius squared. Consider that
at transitions across the discontinuity the liquid streamlines retain their individuality,
i.e. to each streamline before the discontinuity these corresponds a steamline after
the discontinuity. The radial distance to the axis for the given liquid streamline, axial
velocity and some other parameters of the flow will change abruptly at transition
across the discontinuity. Then for each value of ν there will be two corresponding
values of the same parameter before and after the discontinuity. Thus the conditions
at the discontinuity must link the values of corresponding parameters at each ν before
and after the discontinuity.

In order to obtain the conditions at the discontinuity it is necessary to put equations
(4.5) into a divergent form and, considering their physical meaning, define which
quantities have a jump discontinuity and which do not. The difference of the quantities
before and after the discontinuity is denoted by square brackets. From (4.5d) which
already has a divergent form, we obtain for this difference [Rν(w−D)], where D is the
velocity of the front motion. The physical meaning of this expression is the following.
The quantity Rνdν is (in dimensionless form) the element of an annular area bounded
by the liquid streamlines with coordinates ν and ν+dν. Then Rν(w−D)dν is the mass
flow in the annular tube of flow with area Rνdν in the system of reference associated
with the discontinuity front. Assume that at transition across the discontinuity the
mass flow along the tube is conserved. Then the condition (4.5d) takes the form

[Rν(w − D)] = 0. (4.6)

Equation (4.5b) after multiplying it by Rν , in view of (4.5d), takes the divergent form

(RνA)t + (wRνA)z = 0,

which allows, assuming (4.6), determination of the expression for the jump in the
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form

[Rν(w − D)A] = [A](Rν(w − D)).

Thus it follows that the velocity circulation on the liquid streamline may be conserved
at transition across the jump. Assuming that this is valid, we obtain the second
condition at the discontinuity

[A] = 0, (4.7)

which allows simplification of the problem. In the case of continuous motion both
the original system (4.1) and its long-wave approximation have a solution with
A = const. Assume that in the flow before discontinuity A = const. By virtue of (4.7)
this condition is not violated at the discontinuity either. Thus the system (4.5) with
A = const has a solution throughout the entire flow domain (both before and after
the discontinuity) which enables us to set

A = const (4.8)

and simplify the system (4.5), in which p is excluded by integrating (4.5a) over ν, and
taking into account that p = 0 at ν = 1. As a result, two equations remain

wt + wwz + (A2/2)(R−1
0 )z = 0, (4.9a)

Rνt + (wRν)z = 0, (4.9b)

where R0 is the value of R at ν = 1. From this, switching to the frame of reference
associated with the jump, and assuming that the flow in it is stationary, we obtain
the expression

((w − D)2/2 + A2(2R0)
−1)z = 0.

According to (4.5a)

A2(2R0)
−1 = p+ A2(2R)−1 = p+ v2/2,

where v is the rotational velocity component. Thus the expression obtained represents
the derivative of the total head with respect to z in the reference system, related to the
jump, in the long-wavelength approximation. It is not reasonable to consider that the
total head is conserved at transition across the discontinuity, because the energy may
dissipate or transform from the average motion into the energy of short-wavelength
oscillations. Therefore we make the following assumptions: (i) the total head along a
streamline may decrease at transition across the jump; (ii) if the total head decreases,
it changes by the same value on each line of flow. The latter assumption is heuristic
in character and must be supported by agreement of the theoretical estimations wih
experimental data.

Then the third condition at the jump takes the form

[w(w − 2D) + A2R−1
0 ] = K , (4.10)

where K 6 0 (if the parameters before the jump are subtracted from the parameters
after the jump) and K does not depend on ν (Kν = 0). Note that the latter condition
can be obtained by other means.

In rotationally symmetric flows with A = const another quantity appears – the
azimuthal vorticity component divided by radius – which is conserved in the course of
motion in a liquid particle by virtue of the original equations (4.1). In dimensionless
variables it has the form

(ωη−1/2) = −wη + qzδ
2/(4η).



Dynamics of a liquid shell in a rotating fluid 369

Passing to the long-wavelength approximation and z, ν variables, we obtain for α the
expression

α = (ωη−1/2) = −wν(Rν)−1

and the equation in divergent form

(αRν)t + (wRνα)z = 0,

whence, in view of (4.6), follows the expression for the jump

[Rν(w − D)α] = [α](Rν(w − D)).

Assume that neither α, nor A, experiences the discontinuity, which results in the
condition

[wν(Rν)
−1] = 0. (4.11)

In turn, from (4.10), in view of (4.6) it follows that

Kν = [2wν(w − D)] = [2wνR
−1
ν ].

Then according to (4.11) we obtain Kν = 0 and thus by virtue of (4.11), K does not
depend on ν: the change of the total head is the same for all streamlines. Note that
the condition Kν = 0 was derived by Teshukov (1995) for a plane flow of shallow
water under the assumption that at the jump, the circulation is conserved along a
streamline.

Assume that the value of A is given. Then, if K in (4.10) is known, relations (4.6)
and (4.10) would be sufficient for determination of the jump parameters. However,
the losses of the total head at the jump are unknown, therefore the value of K is not
determined and must be found from the solution. Consequently, one more relation is
required, for which an integral law of conservation of the ‘flow force’ is taken.

For a smooth cylinder this assumption is quite natural. The ‘flow force’ is obtained
from (4.9a) after its multiplication by Rν and integration over ν from 0 to 1. As a
result, in view of (4.9b) and that R = 1 at ν = 0, we obtain the condition at the jump:[∫ 1

0

Rνw(w − D)dν − 1
2
A2(lnR0 + R−1

0 )

]
= 0. (4.12)

Below we shall prove that given the parameters of the flow before the discontinuity
(w(ν), R(ν)) and either D or one of the functions w or R after it, relations (4.6), (4.10),
(4.12) completely define the jump. The constant K is also found from the solution.

4.3. Solvability of conditions at the discontinuity

Without loss of generality, consider relations (4.6), (4.10), (4.12) in a reference frame
related to the front. In this case one should set D = 0, and w now means the velocity
relative to the front. Let the parameters before the discontinuity in the reference frame
of the front be given: w1(ν), R1(ν). It is assumed that w1 > γ > 0, R1(ν) = 1−ν(1−R10),
where R10 is the value of R1 at ν = 1. This form of R1(ν) obviously does not restrict the
generality of considerations, since we may choose any convenient way of numbering
the streamlines before the discontinuity. Consider the problem of the determination
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of the parameters after the front, w2(ν), R2(ν). Let us introduce the notation

ψ = w2
2 − w2

1 ,

F(ψ) = ψ + A2(−R−1
10 + R−1

20 ),

E(ψ) =

∫ 1

0

(1− R10)w1[(w
2
1 + ψ)1/2 − w1]dν+ 1

2
A2(lnR20 + R−1

20 − lnR10 − R−1
10 ).


(4.13)

Here R20 is the value of R2 at ν = 1, and ψ is a new unknown function (instead of w2).
Since w1 > γ > 0, for definiteness of the square-root expression we set ψ >−γ2, which
corresponds to w2 > 0. Then (4.6), (4.10), (4.12), in view of D = 0 and expressions for
R1(ν), w2, take the form

(1− R10)w1 + R2ν(w
2
1 + ψ)1/2 = 0, (4.14)

F(ψ) = K 6 0, (4.15)

E(ψ) = 0. (4.16)

From (4.14) one may find R20

R20 = 1−
∫ 1

0

w1(1− R10)(w
2
1 + ψ)−1/2dν. (4.17)

Since K = const, from (4.15) it follows that ψ does not depend on ν and the
possibility arises of considering it as a new independent variable. Thus the problem
reduces to finding the non-trivial solution of (4.16), (4.17) with the condition (4.15).
After obtaining ψ, one can then determine w2, R2 and K from (4.13)–(4.15).

Let us determine the conditions under which a solution of the system (4.15)–(4.17)
exists. Let

λ =
(1− R10)A

2

2R2
10

∫ 1

0

dν

w2
1

. (4.18)

Then the following statements are true.
If λ < 1, the system (4.15)–(4.17) has a solution, and if E(−γ2) > 0, the solution is

unique. If λ > 1, a solution does not exist.
1. Let λ < 1. Differentiating F(ψ), E(ψ) we have:

F ′′(ψ) > 0, F ′(0) = 1− λ, 2E ′(ψ) = (1− R20)F
′(ψ). (4.19)

These relations follow from the definitions of F(ψ), E(ψ), R20 and the easily verified
inequality R′′20 < 0. Since F ′′(ψ) > 0, F ′(ψ) monotonically increases, and F(ψ) is a
function convex downwards. From the expression for F ′(0) it follows that for λ < 1,
F ′(0) > 0. Then F ′(ψ) > 0 for ψ > 0. Since 1−R20 > 0, from (4.19) it follows that the
sign of E ′(ψ) is the same as the sign of F ′(ψ). Consequently, in this case E ′(ψ) > 0
for ψ > 0. Because E(0) = 0, E(ψ) > 0 for ψ > 0. From this E(ψ) can become zero
only for ψ < 0. Let E(−γ2) > 0. Then owing to E ′(ψ) and F ′(ψ) having the same
sign, the monotonic decrease of F ′(ψ) as ψ decreases from 0 to −γ2 and inequality
F ′(0) > 0, the function E(ψ) first decreases to some minimum value and then increases
constantly as ψ changes from 0 to −γ2. Therefore, if E(−γ2) > 0, a unique value of
ψ1 < 0 necessarily exists, such that E(ψ1) = 0. Let us now find the sign of F(ψ1). If
F(ψ1) 6 0, then ψ = ψ1 will be a solution of the system (4.15)–(4.17). Suppose that
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F(ψ1) > 0. Then by virtue of the properties of the function F(ψ), a ψ2, ψ1 6 ψ2 < 0,
can be found such that F(ψ2) = 0. Then, the properties of E(ψ) imply the inequality
E(ψ2) < 0. Integration of (4.19) from ψ2 to 0 yields

−2E(ψ2) =

∫ 0

ψ2

R′20F(ψ)dψ. (4.20)

It can be easily verified that R′20 > 0. Obviously, F(ψ) < 0 for ψ2 < ψ < 0. Then the
right-hand side of (4.20) is less than zero, and the left-hand side is greater than zero.

The contradiction obtained proves that the assumption F(ψ1) > 0 is wrong. Thus,
F(ψ1) 6 0 and a solution for λ < 1 exists and is unique if E(−γ2) > 0.

If E(−γ2) < 0, a solution can be constructed in the following manner. Assume that
after the jump, in the region where R2 changes from R20(−γ2) to some ∆ < R20(−γ2)
to be found in the course of the solution, a stagnant zone originates in which the fluid
has zero axial velocity but rotates with constant circulation. From the mathematical
standpoint this leads to a change of the relations at the transition. In this case in
(4.15), (4.16) one should put ψ = −γ2, and write R20(−γ2) − ∆ instead of R20. Then,
similarly to the previous case, it can be proved that some ∆ > 0 exists such that
E(∆) = 0, F(∆) < 0. That is, from the mathematical viewpoint, such a solution is
possible. From the physical viewpoint the formation of stagnation zones after the
jump is also possible. Note that a similar viewpoint was suggested in the consideration
of hydraulic jumps on shallow water by Teshukov (1995).

2. Let λ > 1. Let us prove that in this case a solution does not exist, i.e. that the
jump is impossible under the given assumptions. If λ > 1, then in view of (4.19),
F ′(0) < 0. This implies that F ′(ψ) < 0, E ′(ψ) < 0 for ψ < 0. Then E(ψ) cannot
become zero for ψ < 0. Let there be some ψ1 > 0 such that E(ψ1) = 0. Let us find the
sign of F(ψ1). Suppose that F(ψ1) 6 0. Then by virtue of the properties of function
F(ψ) and E(ψ), there exists some ψ2 > ψ1 such that F(ψ2) = 0, E(ψ2) > 0 (since
the sign of E ′(ψ) is the same as the sign of F ′(ψ), and for ψ > ψ1 it is apparently
positive). Upon integrating (4.19) from 0 to ψ2 we obtain

2E(ψ2) =

∫ ψ2

0

R′20F(ψ)dψ. (4.21)

From the properties of F(ψ) on the interval (0, ψ2), F(ψ) < 0. Since R′20 > 0, the right-
hand side of (4.21) is negative, whereas the left-hand side is positive. The contradiction
obtained proves that the inequality F(ψ1) 6 0 does not hold. Thus at λ > 1 there is
no transition satisfying (4.15). Since from physical considerations it is evident that
the total head cannot increase at transition across the jump, then for λ > 1, under
the assumptions made, the jump is impossible.

Let us discuss the meaning of conditions λ > 1, λ < 1. For A = const the long-
wave approximation equations (4.9) are similar to those of vortex a shallow in water,
Teshukov (1991). The difference between them is that gravitational acceleration g
is replaced by centrifugal acceleration A2/(2R2

0). Then the equation obtained in
Benney (1973) and Teshukov (1991), after an appropriate modification, can be used
to determine the velocity of propagation of the free surface perturbation. With this
method Nikulin (1994) showed that condition λ = 1 corresponds to the fact that the
velocity of an infinitesimal perturbation is zero relative to a coordinate system fixed
in space. Then it is easily seen that the condition λ < 1 implies that the velocity of an
infinitesimal perturbation is greater than zero. Hence any infinitesimal perturbation
will be transported downstream. If λ > 1 the opposite situation takes place. So, in
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the problem considered the parameter 1/λ plays the role of the Froude number for
shallow water flow. Therefore the flow with λ < 1 can be called supercritical and
that with λ > 1 subcritical. Consequently, under the assumptions made, the jump is
possible only at transition from a supercritical state to a subcritical one.

From the statements proved a corollary follows. The cavity radius after the jump
is always smaller than before the jump, i.e. R20 < R10. Let us prove it. It was found
that a solution exists if λ < 1. In this case, ψ < 0 after the jump. Since R20(0) = R10,
R′20(ψ) > 0, then R20(ψ) < R10 for ψ < 0.

4.4. Comparison with experiment

Let us apply the results of the general theory to a description of the experiments.
In the experiments the flow in an unperturbed state was in solid-body rotation,
therefore its circulation around the axis depended on r. However, if the circulation
varies moderately, the model must describe qualitative mechanisms and, in order of
magnitude, quantitative experimental results as well. In comparing the results we
consider the cavity radius before the front r10 and the velocity of the piston motion
ũ as given values. The cavity radius after the jump r20 and the velocity of the front
motion D̃ will be calculated. As a typical velocity we take the value of the rotational
velocity component at the cavity boundary in the unperturbed state v0. Here r10, r20, ũ,
D̃, v0 are the dimensional quantities, then the dimensionless quantities are defined as
R10 = (r10/r0)

2, R20 = (r20/r0)
2, u = ũ/v0, D = D̃/v0, A = r10/r0 and r0 is the cylinder

radius.
Since in the experiments the jump travels over the fluid, which has zero velocity,

then in the reference frame associated with the jump we have w1 = D, w2 = w1 − u.
Assuming that w1 and u do not depend on ν, let us compute the integrals in (4.16),
(4.17). Denoting x = R10/R20, we obtain

w1 = u(x− R10)/[R10(x− 1)],

A2(x− 1)− 2R10(1− R10)w1u = A2R10 ln x.

}
(4.22)

It is easily seen that these equations have a unique solution x and w1 for given R10, u
and A. Let us use their solution for comparison with the experiment.

In the first experiment we have r0 = 40 mm, r10 ≈ 20 mm, v0 ≈ 4 m s−1, ũ ≈ 10 m s−1.
Then u ≈ 2.5, R10 ≈ 0.25, A ≈ 0.5. Calculation according to (4.22) gives w1/u ≈ 4 and
x ≈ 40. The experimental values are equal respectively to w1/u ≈ 3.3 and x ≈ 100.

In the second experiment r0 = 40 mm, r10 ≈ 30 mm, v0 ≈ 6 m s−1, ũ ≈ 10 m s−1.
Then u ≈ 1.66, R10 ≈ 0.57, A ≈ 0.75. The theoretical results give w1/u ≈ 1.9 and
x ≈ 5.7. The experimental values are w1/u ≈ 1.8 and x ≈ 6.76.

Let us calculate the value of the parameter λ. Assuming that w1 does not depend
on ν, from (4.16) we find λ = (1− R10)A

2/(2R2
10w

2
1). From this it is easy to verify that

under the experimental conditions the inequality λ < 1 was satisfied.
So, theoretical results agree with experimental observations. Some discrepancy

between the experimental and theoretical results is explained by the dependence of
the parameter A on r which is not considered by the model. The difference in values
of R10/R20 in the first series of experiments is due to the fact that for a fast rotating
cylindrical shell it is more difficult to eliminate completely a taper. In addition, an
increase in the thickness of the liquid shell may lead to a change in the parameter A.
Qualitatively, the behaviour of the cavity radius and the value of the parameter λ are
found to be comparable.
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5. Conclusion
The flow stability has been investigated experimentally when a rotating cylindrical

shell is radially converging as a result of its compression by a ring piston under an
explosive load. An interface shape asymmetry has been proved to occur in all the
cases as a result of liquid rotation. Apart from this effect one can observe some kind
of ‘twist’ of the diameter (more clear-cut on the third frame of figure 2a, for p0 = 0.1
atm) and the rather long weak pulsations of a cavity after its first collapse (fourth
frame, p0 = 0.06 atm, t > 2.75 ms).

The approximate equation of cylindrical cavity dynamics (2.2) has been converted
to the corresponding version for an incompressible liquid, (2.3), as a limit transition
in sound velocity (c0 →∞). Then (2.3) has been used to estimate the main parameters
of the cavity dynamics in a rotating liquid (time of collapse and compression ratio).
The comparison of the theoretical estimations with the experimental data both in the
case of a cylindrical charge explosion and in the case of rotating liquid shell collapse
has confirmed the validity of the mathematical model suggested.

We can also conclude that the theoretical bore model is able to describe adequately
a stationary bore in a rotating fluid and to provide a qualitative and quantitative
estimation for experimental conditions with limited sizes of flow domain.

Assistance from referees in improving the presentation of this work is gratefully
acknowledged.
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